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The properties of Hilbert space and group theory are used to point out the fact that the m-dimensional 
Laplace-Gauss law for m unknown structure factors, involving two Karle-Hauptman determinants, Am+~ 
and Din, can take into account full symmetry information for any space group. It is shown that the ratio 
(Am ÷lID,,) is equal to a sum of ratios of Goedkoop determinants. 

The aim of this note is to make clear that the m-dimensional 
Laplace-Gauss law, for m unknown structure factors 
(Tsoucaris, 1970), can take into account full symmetry 
information, for any space group. We recall that this law 
[equation (2)] is expressed in terms of Karle-Hauptman 
determinants. On the other hand, it is well known that the 
use of space-group symmetry amounts to expressing a Karle 
& Hauptman (1950) determinant, as a product of several 
Goedkoop (1950) determinants r:.m • ""  m / s  • 

D., = I-I (;'.u) "-*m/s" (I) 

The Goedkoop determinant r.u) is an order m/s Gram v m / $  
determinant which corresponds to the ith irreducible re- 
presentation of the point group (s is the order of the group). 
Combining these results, we can state that: 

r"'] 
p(E~ . . . . ,  Era)= K exp IN  _Am_+_~] = K exp N 3" . (2) 

L D,, ] "-( (7 -di ] 

The determinant obtained from G~,]s by adding a new 
column and row containing the random variables is also a 
Goedkoop determinant of order (m/s+ 1); for brevity we 
suppress the indices: 

F(t) _/--(t) 
- -  - -mls  + 1 

G ( I )  = (7 .  ( 1 )  
m / s  • 

Example 

For clearness, we give first an elementary proof in the 
special case m =  4, space group P1. Let us consider the A5 
of Table 1, built up by taking the special set of fixed reci- 
procal-lattice vectors: { H , K , - H , - K } .  By elementary 
manipulations (combining rows and columns) this A,,+1 
can be rewritten as in Table 2. This Table shows clearly that 
D4= r:.(x)r:.(2) and provides immediately a statistical inter- u2 v 2 
pretation: each Goedkoop determinant forms the covari- 

Table 1. Am+l determinant corresponding to a Dm deter- 
minant built up from a complete sets o f  symmetry-related 

reflexions for PT (Hp = H, K, - H, - K) 

1 

UK-H 

1 
A$ = 1~- V-mH 

U--K-H 

E--H+L 

U.-K U2. U.+K E. -L 

1 OK+ H U2K EK_ L 

U - H -  K 1 U--H+K E-n-L  

U-2K U-K+ H 1 E - K - L  

E-K+L EH+L EK+L N 

Table 2. Rearrangement o f  the Karle-Hauptman determinant given in Table I 

1 As---~ 

1 + U2H UH+K'~- UH--K 0 0 (EH--L + E - H - L )  

V2 

(EK-L +.E--K--L) 
UH+K "{- UH-K 1 "]'- U2K 0 0 [/2 

0 0 

0 0 

(E--H+L"~ EH +L) ( E -  K+L'+" EK+L) 

1 - U2H UH--K -- UH+K 

U H - K -  UH+K 1 -- U2K 

V2 V2 

(E--H+L-- EH+L) (E-K+L-- EK+L) 

V 2 V~2 

(Eu -L - -E -H-D 

V2 

( E K - L -  E--K--L) 

[/2 
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ance matrix for two independent two-dimensional random 
column vectors, the elements of which are symmetry 
adapted linear combinations of structure factors: 

I; ( ' ) =  ((EH_~. n t- E_H_~.)/]/2~ 
~(EK_L-I- E _ K _ L )  /I/2] 

I~ (2)= / (EH_  L -  E--H--L)/V2% 
\ ( E K  - L - -  E _  K - L ) / V  2 ]  • 

In the special case L = 0, the expression of As written in the 
form (a), turns into the form (b) or (c) (Fig. 1). The prob- 
ability law of e(" can be derived from the Goedkoop deter- 
minants F3 (~) and G~ 1) corresponding to the totally sym- 
metric representation, since the ratio of the Karle-Haupt-  
man determinants is equal to that of the Goedkoop 
determinants :* 

A,/D4=F(a')/G[ ' '  . 

General proof 

The above results could be generalized for any order, in 
any space group, following the same factorization process, 
but the use of the Hilbert space provides a quicker proof. 

The vectors Vp (p = 1 . . .  m) (Tsoucaris, 1970, Appendix 
B), including complete sets of symmetry-related reflexions, 
are combined to form S.A.L.C. (symmetry adapted linear 
combination) .¢:m by using the projection operators, for 
each irreducible representation, as defined in group 
theory (r = 1 . . . .  , m/s; i=  1 , . . . ,  N~; Arc = number of classes). 

Vectors ~ ' ( o  belonging to different irreducible repre- 
sentations are orthogonal. Therefore, the square of the 
volume of the parallelotope (I,'1, 1/2 . . . . .  V,,) (equal to the 
Kar le-Hauptman determinant Din) is equal to the product 
of the squares of the volumes of the projections on each 
subspace (each of which is equal to the corresponding 
Goedkoop determinant Gin). That is nothing but the limit 
case of the generalized Hadamard inequality. 

Next, for A~ ÷ ~, we decompose the random vector W into 
comPonents lying in each irreducible subspace: 

W = ~. W (t). (3) 
l 

By writing the volume of the parallelotope: 

(Vl . . . .  , Vm,  W ) =  ~ ( V l  . . . .  , Vm, WB (4) 
l 

we immediately obtain the equality: 

F " ) H  G(J) 
Z~m+l l j ~ l  ~, IT'(l) 

(5) 
--Din ...... H G (j)  = ~ G  ") 

I 

J 

For the special case L = 0, we obtain for any space group: 

Am+l F (1) 
Dm -- G ( I )  (6) 

because then Wl belongs to the subspace corresponding to 
the totally symmetric representation. 

Statistical interpretation 

Let us call #/u) the elements of G u) corresponding to the ~ p q  

ith irreducible representation of the point group. For  
Abelian groups: * 

q/u) - ~ Zu) exp [2niHptv] U($uHp_n~) (7) pq-- 
V=I 

Sv are the operations of the space group, defined by r,~v = 
r~v+tv and Z u) is the character corresponding to ~v. 
Defining p(°=T/N'°-//(t) and using Goedkoop's  (1954) vpq v . . w p q ,  

formalism it is easy to prove that for equal-atom structures: 

o(') o(J) ,>~=sSf lz(~ (8) Op,m + l °q ,m + 

The equation (2) is derived from this last result which is 
equivalent to the following statement: the covariances o f  
S.A.L.C.  o f  the E's  (unknown and variable) are S.A.L.C.  
o f  U's (known and fixed).  In other words, the validity of 
the Laplace-Gauss law when we take into account the 
symmetry is connected to the fact that Sayre's (1952) equa- 
tion is symmetry-independent. 

The special case where only one e~ is unknown has already 
been treated by de Rango (1969) and the results have been 
quoted by Tsoucaris (1970), equation (11). It is in fact the 
expression of the well known regression-plane equation 
with an obvious change of notation (eq for Eq and Gpq for 
Dpq) :? 

1 m/s 
e~ = - -G-q-q p~'l= Gpqep (complex-number notation) (9) 

p#q 
m/s 
Y. IG,~c,I sin [~0(ep) + ~0(Gp~)] 

p=l 
tan ~p(e~) = mls ............................................................. P ~ q 

Y~ Ia,~,l cos [~(e,)+ ~(a,.)] 
p = l  

(tangent-formula nota t ion) .  (l 0) 

A last remark should be made about the statistical origin 
of the probability laws. Since the random vector W involves 
L and r~ in a symmetrical way, the results are the same, 
whether one considers L fixed and rt variable, or inversely, 
L variable and rt fixed. 

* This special case has been treated by Castellano, Podj- 
orny & Navaza, (1973). 

L~ tO L - - O  

a;" o C" GT o ~": c~" C' o 

= ~(') !N 0 = r~llGt2) 
A5- -  0 G~aV ~.c=} ===a~ 0 G~= '~ 0 2 

E, a~ E? ~ N EY ~ 0 N 0 0 G(~ ~ 

t a l  tb l  (CJ 

D4 - -  G (1) 
2 

Fig. 1. Diagram showing the degeneracy of the determinant 
given in Table 2, in the special case L = 0. 

* In the general case, we have to replace the character 
X~v o by a It × It matrix if/~ is the dimension of the ith representa- 
tion. 

? For clearness the index is deleted. 
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